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A case study is presented in which the logistic map is shown to have anomalous,
precision-dependent behavior. It is also demonstrated that using greater precision
does not necessarily lead to greater accuracy and, in fact, the contrary can be true.
Though the presention deals only with this particular map it illustrates that the actual
math package being used should be examined and cannot be treated as a black
box. c© 2001 Academic Press
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1. INTRODUCTION

This study deals with the possibility of computer-induced artifacts in chaos studies. The
analysis is structured around the quadratic iterator also known as the logistic map,

xn+1 = Axn(1− xn), (1)

whereA ≤ 4.0 andn = 0, 1, . . .∞.
Nothing about the method of analysis is limited to this example but we know of no other

examples in which similar results occur. Nonetheless the possibility of unwanted intrusions
of computer arithmetic into numerical studies of any type does exist. Increasing precision
does not necessarily increase accuracy, as is illustrated here.

The effect of computer round-off on the study of nonlinear systems is well documented
[1, 2]. In general, the computer solution diverges exponentially from the “true” result. How-
ever, the shadowing theorem [3] states that the computer solution is near to, or shadows,
a true solution; hence the computer solution itself is still useful [4]. Figure 1 (top) shows
the divergence resulting from round-off of the iterates of the logistic equation. The “ex-
act” solution is based on 28 digits of precision compared to 8 digits of precision for the
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FIG. 1. Top: The true solution of the iterates of the logistic equation are shown in black and then grey. The
extended black solutions show the effect of computer round-off. The initial seed in both cases is 0.2. Bottom: The
“true” iterates of an initial seed ofx0 = 0.217 andA = 3.8, shown in gray, come in to shadow the rounded iterates
of A = 3.8 and initial seed of 0.2 after around 50 iterations.

comparison solution. Both are based onA = 3.8 and an initial starting point ofx0 = 0.2.
Figure 1 (bottom) shows how the iterates of another value ofx0 come in to shadow the pre-
cision 8 computer iterates ofA = 3.8. Round-off, or finite precision, does not cause chaotic
behavior [5] but can be used to predict the Lyapunov exponent. The Lyapunov exponent,
for the one-dimensional quadratic iterator,Ax(1− x), is given ass(A) = −λ(A)/ ln(10),
wheres(A) is the digit loss/gain per iteration as a function of the parameter,A, andλ is
the Lyapunov exponent. The growth in the error1E is proportional toeλ, so a positiveλ
produces an exponential decrease in precision and vice versa. If the parameterA is in the
chaotic regime,λ will be positive and result in an increase in the error between iterations,
moving continuously away from the current true trajectory. In this paper we present an
important class of numbers for which this is not the case.

Most initial conditions,x0, correspond to the same Lyapunov exponent,λ, which, along
with shadowing, prevents finite digit arithmetic from masking the effects of chaos. This
allows the loss of precision due to finite digit arithmetic to be viewed as anex-post-facto
shift in x0, which does not alter the overall behavior of the iteration. For example, if the
parameterA is such that the iteration should produce a stable double population, the iteration
will move toward the population with a decreasing error in proportion toeλ, whereλ will
be negative . However, ifA is in the chaotic regime, the iteration will move continuously
away from the current true trajectory with an error proportional toeλ, whereλ is positive.
This last statement is not true for an important class of numbers, namely, numbers where
positiveλ does not cause increasing error.

The present discussion will be limited to rational numbers,p/q, p and q both inte-
ger. Computers are capable of representing only rational numbers exactly. While the fol-
lowing holds strictly true for BCD (binary coded decimal) arithmetic, where the indi-
vidual decimal digits are separately converted to their binary equivalents, typical binary
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representations produce results consistent with those presented here. The derivation pre-
sented here assumes that if the decimal representation of the entered number is longer
than the specified precision of the computer, the number is truncated. For example, 1/7=
0.142857142857... would be represented by 0.14285714 in precision 8. On the other hand
it can be difficult to tell how the arithmetic is actually done. It may well be that al-
though the specified precision is 8, calculations are actually performed using 10 digits
and rounded to 8. For this reason, and for the convenience of the reader, a BCD emulation
via JavaScript is directly accessable athttp://www.image-ination.com/logis.html.
Since JavaScript is dependent on browser evolution and new browsers may not always
properly respect earlier versions of JavaScript, we also have available the same emula-
tion written in Scheme. This has been tested on Unix, Windows, and Macintosh systems.
The source is available athttp://www.image-ination.com/logistic.txt and in-
structions athttp://www.image-ination.com/ReadMe.txt. A runtime version for the
Macintosh is available atftp://image-ination.com/Logistic.hqx.

We might encounter an error inx0 in one of two ways: eitherx0 is inaccurate because of
insufficient knowledge on our part or it cannot be represented without error by a computer.
For example, if we knowx0 to be exactly 1/11 and wish to use this initial value in a computer
program we introduce an error,x0− x̄0, wherex̄0 is x0 as represented by the computer. The
error in this case is

1E0 = 10−N frac(10N(1/11)), (2)

whereN is the precision of the computer and frac returns the fractional part of a number.
One may attempt to avoid precision-induced error by using only rational arithmetic. This
preserves the “true” trajectory but almost always exceeds the capacity of the computer in
short order. Here we consider only one-dimensional system errors which propagate because
of precision-induced errors inx0.

2. RESULTS

In order for the quadratic iterator parameter,A, to be exactly represented by the computer
it is taken to be of the formq/p, wherep contains only factors of 2 or 5. The fixed point
of the iterator,

x0 = (1− 1/A), (3)

becomes unstable atA = 3 and is replaced by a repeating double population which with
increasingA rapidly splits into populations of 4, 8, 16, etc., until chaos is reached. How-
ever, as expected, if rational arithmetic is used forA = 3.5 (i.e., 7/2), where conventional
decimal iteration would be expected to produce a repeating series of four populations, the
fixed point 5/7 calculated from Eq. (3) is metastable. This result follows from the fact that no
information is lost between iterations when rational arithmetic is used and from the fact that
fractions of the formn/7(n = 1, . . . ,6) have the property that eithern/7 or 1− (n/7) is
even. This cancels the 2 in the denominator of 7/2, causing the resulting iteration to always
produce a member of then/7 family; consequently, the information content does not grow
unmanageably. This result would not be expected from finite precision decimal arithmetic
but, surprisingly, using decimal arithmetic with a precision of 9(5/7= 0.714285714) or
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7 (5/7= 0.7142857) still produces the same metastable population after any number of
iterations. However, for a precision of 8(5/7= 0.71428571), the single population is not
stable. The Lyapunov exponent for precisions 9 and 7 is 0.4055 (and so they should not be,
but are, metastable), but for precision 8 it is negative (−0.81) as expected, both as calculated
in [1]. Clearly, the precision of the computer plays an important role in this instance as in
many others.

ConsiderA = q/p andx0 = 1− p/q. x̄0 will be x0 as represented by the computer,

x̄0 = 1− p/q − ε0(N,q, p), (4)

where

ε0(N,q, p) ≡ 10−N frac(10N(1− p/q)). (5)

Iteratingx̄0 will produce a growth in the error such that

x1 = q/p(1− p/q − ε0(N,q, p))(p/q + ε0(N,q, p)) (6)

= 1− p/q + ε1(N,q, p), (7)

where

ε1(N,q, p) = (q/p− 2)ε0(N,q, p) (8)

and terms quadratic inε0 have been ignored. Values ofA greater than 3 ensure thatε1 > ε0.
This divergence from the stable solution will continue as the iteration moves away from
the initial seed,x0 = 1− p/q. However, the finite precision of the computer calculation
introduces an additional error,ε2, in the value ofx1,

ε2(N,q, p) = 10−N frac(10N x1). (9)

If

ε2(N,q, p) = (q/p− 1)ε0(N,q, p), (10)

then the propagation error will be canceled at each iteration by the corresponding truncation
error. To see this, writex1,

x1 = x̄0+ ε0(N,q, p)+ ε1(N,q, p) (11)

= x̄0+ (q/p− 1)ε0(N,q, p). (12)

For x̄1 to equalx̄0 requires that

(q/p− 1)ε0(N,q, p) = ε2(N,q, p) (13)

or

(q/p− 1) frac(10N(1− p/q))

= frac(10N(x̄0+ (q/p− 1)10−N frac(10N(1− p/q))). (14)
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Sincex̄0 = 1− p/q and frac(m+ x) = frac(x) for m integer, the above reduces to

(q/p− 1) frac(10N(1− p/q)) = frac((q/p− 1) frac(10N(1− p/q))), (15)

from which it is concluded that for̄x1 = x̄0, (q/p− 1) frac(10N(1− p/q)) must be less
than 1. This is a sufficient condition for the truncation error to cancel the propagation error.

For example, considerp = 2,q = 7 so thatx0 = 5/7. Since 10 is a primitive root mod 7,

106 ≡ 1(mod 7), (16)

it follows [6] that the repeating fraction for 1/7 has period 6 and thatm/7, m= 2, . . . ,6,
is just a cyclically shifted version of the decimal representation of 1/7. Therefore,

frac(10N5/7) = m(N)/7, (17)

where m(N) = 1, . . . ,6 depending on the precision,N. For (q/p− 1) frac(10N(1−
p/q)) < 1 to be true requires

(q/p− 1)m(N)/7< 1 (18)

or

m(N) < 14/5, (19)

which implies thatm(N) equals 1 or 2. For precisionN = 9,m(9) = 2, and for pre-
cision N = 7,m(7) = 1, and therefore the condition is satisfied in both cases, but for
N = 8,m(8) = 4, which does not satisfy the condition above. This explains the earlier
observation about the stability of 5/7 for A = 7/2 with precisions 9 and 7 but not 8. Any
precision that produces anm(N) of 1 or 2 will be metastable. The value ofm(N) is found
from the periodic nature of the repeating fraction 1/7 as the value for whichm(N)/7 equals
the fractional part of 5/7 shiftedN digits to the left.

Consider now the general case, which requires that

(q/p− 1) frac(10N(1− p/q)) < 1 (20)

or

frac(10N(1− p/q)) < p/(q − p) = 1/(A− 1). (21)

Since only values ofA from 3 to 4 are of interest, a sufficient condition for the cancellation
of errors to occur is

frac(10N(1− p/q)) < 1/3. (22)

If q is chosen so that

10q−1 ≡ 1(modq), (23)
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then the cancellation condition above becomes

m(N)/q < 1/3, (24)

wherem(N) = 1, . . . ,q − 1. For anyq > 3 this is automatically satisfied for at least some
values ofN.

For anyq/p, x0 = 1− p/q, for which 10q−1 ≡ 1(modq), the above guarantees the
existence of a precision for which the metastable single populationx0 is maintained upon
iteration. The first fewq values for which this is true [6] are 7, 17, 19, 23, 29, 47, 59, 61, 67.
For example,q = 19 andp = 5 correspond to anA value firmly within the chaotic regime
yet with a metastable single population of 14/19 for at least some precisions. Ifq is prime
andk in 10k ≡ 1(modq) is not equal toq − 1, then the family of fractions defined bym/q
will be broken into(q − 1)/k sets withk elements each [6]. For example, ifq = 11 then
k = 2 and there are then 5 sets each containing 2 of the possible 10 fractions. This grouping
does not guarantee that the properm(N) is available to satisfy the condition

m(N)/q < 1/A− 1, (25)

sincem(N)/q would correspond to only that set of fractions that contains the starting point
(q − p)/q. However, for all primes less than 100 it is always true that the condition can be
satisfied for some precision for anyp such that 3< q/p < 4 andp contains only factors
of 2 or 5.

Are other conditions that produce stability available? In general we can writex0 =
(q − p)/q. If q contains only factors of 2 or 5 thenx0 is also a terminating fraction. Any
precision,N, for which N is greater than the decimal fraction length ofx0 and A will
produce a metastable single population. A method for choosing values ofq and p, where
bothx0 andA are terminating decimals, follows.

The desired values ofA are between 3 and 4, which means thatA is of the form 3.xyz...
(M decimal digits). The initial value,x0, is a number between 0 and 1 of the form 0.uvw
(N decimal digits). Choosingx0 = 1/A makesx1 = 1− 1/A, which, for the quadratic
iterator, is a candidate for a metastable population; therefore 1/A is a suitable choice for an
initial position. LetB = 1/A and write them asA′ = A10M andB′ = B10N , from which
it follows that A′B′ = 10Z , whereZ = M + N. Without loss of generality we can take
A′ = 2Z or A′ = 5Z, which implies thatB′ = 5Z or 2Z, respectively. Therefore, from
an A′ the appropriate value ofA is determined by placing the decimal after the first digit of
A′ while the associated starting value ofx is found fromB′ by placing the decimal at the
front of the string of digits. So, forZ = 5, we have 25 = 32 and 55 = 3125 with A = 3.2
andx0 = 1− B = 1− 0.3125= 0.6875 whenM = 1, N = 4. Also, for M = 3, N = 2,
andZ = 5 we getA = 3.125 andx0 = 1− 0.32= 0.68.

To find appropriate values forA (and henceq andp) it is necessary that 2Z or 5Z or both
have a leading digit of 3. The decimal length of 2Z is given bydZ log(2)e. Calculating

A = 2Z/10Z log(2) − frac(Z log(2)) (26)

returns an expression forA from 0 to 10. Requiring 3≤ A < 4 reduces this to

3≤ 10frac(Z log(2)) < 4, (27)
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or

log(3) ≤ frac(Z log(2)) < log(4). (28)

Writing Z = 10n+ 5(n = 1, 2, . . .) makes it evident that allZ ending in 5 up to and
including Z = 95 satisfy the above inequality. For 5Z the appropriate condition is

log(3) ≤ frac(Z log(5)) < log(4), (29)

and writing Z = 10n+ 8 implies that anyZ ending in 8 up to and includingZ = 118
satisfies the inequality.

3. CONCLUSION

While the effect of computer-induced error on modeling chaotic behavior of nonlinear
systems is well understood, this paper has presented cases in which the expected computer
influence is not observed. This variation from the expected behavior can be understood as
arising from the precision the computer uses in its calculations and manifests itself in two
contrasting ways: for certain terminating decimals the single solution may be seen as always
metastable, given the proper arithmetic and precision, because no information is ever lost,
or in the case of repeating decimals stability may be introduced where none should exist
by canceling errors in the first order. A new study [7] shows that additional anomalous
stabilities exist because of cancellations in the second order. These effects are shown to be
direct consequences of the precision used in the calculation. Therefore, increased precision
in the calculations does not necessarily translate into less computer influence upon the results
obtained. There is no evidence that the results reported here translate to higher dimensional
maps. Investigations of Arnold’s cat map [8],

xn+1 = frac(xn + yn) (30)

yn+1 = frac(xn + 2yn), (31)

produced errors similar to those discussed above but no cancellations were discovered.
Further, no general rules are known that will guide investigators in determining when to
guard against the effects reported here. It seems clear, though, that investigators would be
wise to check their calculations with various precisions and look for inconsistent results.
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